ADR-AC Symposium May 12th, 2022

<u>fake</u> antigen – the <u>true</u> cause of drug induced anaphylaxis

Werner J. Pichler Bern Switzerland

Conflict of interest statement

WJP has been involved in Consultations & Funding in 2020-2022 by following companies: argenX, Staten, Roche

To understand DRUG HYPERSENSITIVITY, you have to start with the beginning.....

Is the drug acting as antigen or as drug?¹⁾

It's all about drug binding to proteins how and where*

it`s all about drug binding to proteins: how and where

 Drugs: most drugs do <u>not</u> bind by covalent bonds to proteins; but they bind constantly by non-covalent bindings to proteins like HSA, transferrin, Ig,..

 Some drugs are haptens: Haptens are relatively small molecules that can bind by covalent means to proteins. The new complex is stable & big enough to elicit an immune response

• Carrier/protein: e.g. human serum albumin (HSA), transferrin, cell surface proteins like ICAM, HLA,

 Covalent bonds: A covalent bond, also called a molecular bond, is a chemical bond that involves the sharing of electron pairs between atoms; very stable (-); new antigen

• Non-covalent interactions rely on electrostatic interactions, ion pairs, hydrogen pairs ... Even though they are weak individually, the cumulative energy of molecular interactions is significant (Kd: 10^{-5 to -7}M) (***-*); may form "fake antigen"

Drugs bind to proteins......

First

- Drugs bind to proteins constantly: non-covalent bindings
- Labile
- Fast, seconds/minutes
- Reversible
- Ignored by the immune system
- all drugs, including haptens / β-lactams

later

- Haptens are drugs able to bind to proteins by covalent bonds
- Stable
- Slow, hours
- Not-reversible
- New antigen for immune system
- Few drugs
 (e.g. β-lactams)

Non-covalent binding is the dominant type of inter-molecular force in supramolecular chemistry. These **non-covalent interactions** include - **ionic bonds** hydrophobic **interactions** - hydrogen **bonds** - van der Waals forces and dipole—dipole **bonds**. Drugs — including those able to bind by covalent bonds — bind **first** via non covalent bonds to proteins

The formation of covalent bonds at pH 7,4 between β -lactams and carrier-protein is **SLOW.** It needs >4 hours (mass-spectrometry)

Anaphylaxis to a beta-lactam (cefuroxim)

within minutes: -

- Anaphylaxis (cardiac arrest) to i.v. cefuroxim (perioperative, knee operation)
- pos. SPT
- pos. BAT

lgE

How is it possible that anaphylaxis, skin tests, BAT occur so rapidly (<2-15min), if formation of covalent bonds lasts hours????

→ It must work without covalent bonds!!!

IgE mediated reactions (e.g. anaphylaxis) to «<u>inert»</u> drugs (not haptens)

Acute generalized urticaria & brochospasm (min) after i.v. Sulfamethoxazole /Trimethoprim (Bactrim^R); pos. SPT and direct BAT to Bactrim^R

Pat K.-Sch. 1977: urticaria & bronchospasm after Bactrim monotherapy (Sulfamethoxazole /Trimetoprim)

SMX from skin test site to liver and again back as SMX-NHOH/SMX-NO ??? If one detects a positive skin test after 15min – *it must be due to SMX itself*

MC bound IgE is interacting with drug------protein complexes covalently

looks
identical
for the
antibody
binding site

Fake antigen:

- rapidly (immediately, < 1min) formed drug-protein complexes
- this drug-protein complex is based on non-covalent bindings
- They are stable enough to interact with IgE & cross-link IgE bound to Fc-IgE-RI (=,,fake antigen")
- "fake antigen" are not able to induce IgE
- (all?) immediate allergic reactions to drugs are based on these "fake antigens" (clinic & tests)!!

IgE-mediated Hypersensitivity

Overcoming mast cell unresponsiveness by *«fake antigen»*

These **fake antigens** (immediately formed, high amounts) **encounter** IgE-armed MC *fine tuned (tolerant)* for *low* antigen concentrations

- **1. Anaphylaxis** to iv (or oral) drugs, which can occur <5min after injection, first signs start <1min....
- 2. Positive skin prick tests (within 15min) to soluble drugs (amoxicillin, cefuroxim, RCM,) before stable drug-carrier complexes can be formed in vivo
- **3. Positive SPT/i.d. to drugs** (15min) **like SMX**, which need **metabolism** to generate reactive metabolites (SMX-NHOH/SMX-NO, >10hrs). The IgE was induced to the metabolite SMX-NO and is cross-reacting with SMX
- 4. The positive **in vitro BAT** to drugs, which occur fast, without in vitro metabolism (cefuroxim, SMX, PPI...)
- **5.** This concept has an enormous impact on: Risk assessment of drugs, clincal interpretation, cross-reactivity, prevention, diagnosis.....

S N S E S P W E E T R I B T O L I

S

M

DOI: 10.1111/all.14554

REVIEW ARTICLE

Anaphylaxis to drugs: Overcoming mast cell unresponsiveness by fake antigens $\sqrt{}$

Werner J. Pichler

ADR-AC, Bern, Switzerland

Correspondence

Werner J. Pichler, ADR-AC, Holligenstr 91, 3008 Bern, Switzerland. Email: werner.pichler@adr-ac.ch

Abstract

Our understanding of IgE-mediated drug allergy relies on the hapten concept, which is well established in *inducing adaptive* reactions of the immune system to small molecules like drugs. The role of hapten-carrier adducts in *re-challenge* reactions leading to mast cell degranulation and anaphylaxis is unclear. Based on clinical observations, the speed of adduct formation, skin and in vitro tests to inert drug molecules, a dif-

(Specific) mast cell unresponsiveness

features & function

A normal and natural process supplementing IgE synthesis to an allergen

- inking multaneously the MC/basophils
 inking in the militare on Laxance of concentration

 insight the militare of concentration occurs, simultaneously the market concentration occurs, simultaneously the militare of concentration occurs, simultaneously the MC/basophils

 inking multaneously the MC/ba When less ensitization occurs, simultaneously the MC/basophils

 When less ensitization occurs, which is allered to the allered to th

IgE-SENSITIZATION OCCURS <u>IN PRESENCE OF DRUGS</u>: it leads to **slow** loading of Fc-IgE-RI on MC with IgE & IgE interactions with drug-protein (IgE-immune complexes)

Slow loading of MC by drug specific IgE

MC unresponsiveness is a natural process supplementing IgE synthesis; it avoids inapprobriate MC degranulation

MC unresponsiveness by antigen-IgEcomplexes and Fc-IgE-RI-cross-linking is induced

1) in initial
sensitization by a
gradual increase
of IgE

2) in therapeutic
desensitization by a
gradual increase
of antigen

Examples of mast cell unresponsiveness

NO REACTION IN THE PRESENCE OF IGE & ANTIGEN:

- ➤ During **sensitization** (IgE), a **desensitization** of MC reactivity to the drug/potein occurs; example: amoxicillin therapy with IgE synthesis
- ➤ Bee keepers do often carry IgE to bee venom:

 They react in spring to the first bee stings, after days and some more stings no more: MC reactivity «fine tuned»
- > Rush venom immunotherapy:
 - $0.1~\mu g$ $1~\mu g$ $10~\mu g$ $20~\mu g$ $30~\mu g$ $50~\mu g$ ($50~\mu g$) (>111 μg) venom within 3,5 hr. Transient tolerance of 50-100 μg venom in IgE sensitized
- Drug desensitizations: multiple schemes of drug desensitizations lasting 4-6hrs; necessity to redo desensitization after ca. 4 weeks

(Specific) mast cell unresponsiveness

features & function

- = A normal and natural process supplementing IgE synthesis to an allergen
- <u>purpose</u>: MC unresponsiveness prevents systemic MC degranulation to those systemic allergen concentrations, which induced IgE
- <u>alarm preserved locally</u>: MC reactivity is preserved to higher local allergen concentrations
- Specific (IgE, allergen)
 - reaction by MC to other allergens/IgE not affected
- <u>very sensitive (allergen/IgE↔Fc-IgE-RI)</u>
 - <u>amount</u>: sensing low high allergen concentrations (IgE interactions/cross-linking)
 - <u>speed:</u> sensing speed of increasing drug concentration (IgE interactions/cross-linking)
- ?, detailed mechanism, purpose

IgE-mediated Hypersensitivity

Sensitization

days no symptoms

Re-exposure

minutes Urticaria, anaphylaxis, etc.

Explanations/Nomenclature

fake antigen can interact with IgE; they are based on non-covalent binding between drug and protein; such complexes are formed & available rapidly in high amounts

Covalent drug-protein complexes act like "true" antigen (foreign protein); they are formed slowly and desensitize MC

MC unresponsiveness: during IgE-sensitization MC acquire "tolerance" to the maximal/last (?) concentration of recognized allergen

It is a specific (IgE-mediated) un-responsiveness of MC (& basophils) to this allergen

The MC can still degranulate to higher concentrations of the same allergen or many other allergens/IgE

What means unresponsive: no degranulation?, or only partly degranulation?

Fine tuning of MC: the allergen concentration during sensitization determines the degree of mast cell (un)responsiveness in future/in life

With high allergen concentrations at sensitization, the mast cells become unresponsive to high allergen concentrations: sensitized, but not allergic

If the allergen concentrations during sensitization are low, mast cell unresponsivenss is limited to low concentration alone: degranulation may already occur at medium concentrations of allergen (= allergy)

Thank you

and to my colleagues Lukas Jörg, Daniel Yerly, Oliver Hausmann, Lester Thoo, Katja Martin, Florian Pichler, Ulrika Axius, Matteo Prezzi for input, discussions & support

werner.pichler@adr-ac.ch

Supplementing information

Pichler WJ, Hausmann O. Classification of Drug Hypersensitivity into Allergic, p-i, and Pseudo-Allergic Forms. Int Arch Allergy Immunol. 2016;171(3-4):166-179.

Pichler WJ. Anaphylaxis to drugs: overcoming mast cell unresponsiveness by fake antigens. Allergy. 2021 May;76(5):1340-1349

Pichler WJ. The important role of non-covalent drug binding in drug hypersensitivity reactions, Allergy. 2022 Feb;77(2):404-415

Pichler WJ. Immune pathomechanism and classification of drug hypersensitivity. Allergy. 2019 Aug;74(8):1457-1471

Anaphylaxis is due to a sudden increased allergen concentration overcoming mast cell unresponsiveness

Anaphylaxis to drugs:

sensitization is due to true antigen (= covalent drugprotein complexes), which are formed slowly and induce MC-unresponsiveness to only low molar concentrations (compared to free drug).

Anaphylaxis occurs due to the formation of **fake antigens:** these are formed rapidly, in high concentrations & are able to crosslink IgE/Fc-IgE-RI: this overcomes mast cell unresponsiveness

Anaphylaxis is due to a sudden increased allergen concentration overcoming mast cell unresponsiveness

Anaphylaxis (allergy) to protein antigens:

the sensitization occurs via small amounts of allergen, namely by percutaneous or respiratory allergen (= protein) uptake: This is sufficient to induce mast cell unresponsiveness to low allergen concentrations only.

Anaphylaxis occurs, when the MC are suddenly exposed to **high** allergen concentrations, as it is achieved by parental or oral allergen uptake: the high concentrations overcome MC unresponsiveness & allergic symptoms/anaphylaxis to protein allergen can occur.

Immune reactions to drugs are determined by drug binding to proteins: how and where

Pichler WJ. The important role of non-covalent drug binding in drug hypersensitivity reactions, Allergy. 2022 Feb;77(2):404-415