



# T CELLS – UNDER-APPRECIATED IN COVID-19 RECOGNITION FROM ROUTINE & RESEARCH WITH IN VITRO ASSAYS

Dr. Lester Thoo ADR-AC GmbH, Bern

# Adaptive immunity in Covid-19



Killing & elimination of infected cells



blocks cell entry

# Cellular immunity test



SARS-CoV-2 Peptide





Virus neutralisation before cell infection

# SARS-CoV-2 structure not just Spike!

Large single-stranded RNA virus (30 kb)

16 non-structural proteins

3 **abundant structural** proteins

#### **Coronavirus Structure and Protein Visualization**



# **Assay Protocol**



### Use in Routine Diagnostics

Established in 1871

### Swiss Medical Weekly

Formerly: Schweizerische Medizinische Wochenschrift An open access, online journal • www.smw.ch

Original article | Published 13 September 2021 | doi:10.4414/SMW.2021.w30005 Cite this as: Swiss Med Wkly. 2021;151:w30005

# Highly specific and reliable in vitro diagnostic analysis of memory T and B lymphocytes in a Swiss cohort of COVID-19 patients

Lester Thoo<sup>a</sup>, Pierre I. Gumowski<sup>bc</sup>, Kevin Kammermann <sup>a</sup>, Swelia Nussli<sup>a</sup>, Benno Grabscheid<sup>a</sup>, Oliver Hausmann<sup>ade</sup>, Ulrika Axius<sup>a</sup>, Werner J. Pichler<sup>a</sup>, Daniel Yerly<sup>a</sup>

- <sup>a</sup> ADR-AC GmbH, Adverse Drug Reactions Analysis and Consulting, Bern, Switzerland
- b INRAAIC, Meyrin, Geneva, Switzerland
- <sup>c</sup> Clinical Immunology, Hôpital de la Tour, Meyrin, Switzerland
- d Löwenpraxis Luzern, Lucerne, Switzerland
- e Klinik St. Anna, Lucerne, Switzerland

|                  |              | Activation cut-off value (relative to negative control) |                                    | ff Con | Convalescent (N=30) |             |   | Unexposed (N=10) |             |      |      |
|------------------|--------------|---------------------------------------------------------|------------------------------------|--------|---------------------|-------------|---|------------------|-------------|------|------|
|                  | Antigen      |                                                         |                                    |        | -                   | Sensitivity | + | -                | Specificity | PPV  | NPV  |
|                  | S1 <b>-</b>  |                                                         | 2                                  | 26     | 4                   | 87%         | 1 | 9                | 90%         | 96%  | 69%  |
| + <u>v</u>       | S2           |                                                         | Combined                           |        |                     |             |   |                  | 90%         | 96%  | 53%  |
| CD4⁺<br>「cells   | NC           |                                                         |                                    |        |                     |             |   |                  | 100%        | 100% | 63%  |
| • -              | Combined     | 2 in                                                    |                                    |        |                     |             |   |                  | 90%         | 97%  | 82%  |
|                  | Statistics   | stim                                                    | Soncitivity 020%                   |        |                     |             |   |                  | 90%         | 9/%  | 0270 |
|                  | Membrane Mix |                                                         | Sensitivity 93%<br>Specificity 90% |        |                     |             |   | 70%              | 80%         | 28%  |      |
| slls             | Spike Mix    |                                                         |                                    |        |                     |             |   |                  | 70%         | 83%  | 32%  |
| CD8 <sup>+</sup> | NC Mix       |                                                         |                                    |        |                     |             |   |                  | 90%         | 94%  | 41%  |
| ~ -              | Combined     | 2 in                                                    |                                    |        |                     |             |   |                  | 60%         | 85%  | 46%  |
|                  | Statistics 🕳 | stim                                                    | uli conditio                       | n 23   | ,                   | ///0        | 4 | 0                | 00%         | 65%  | 40%  |

| Analysis                                 | Result                                                       |
|------------------------------------------|--------------------------------------------------------------|
| IMMUNOLOGY                               |                                                              |
| SARS-CoV-2 Lymphocytes Analysis          |                                                              |
| T cells CD4 Spike 1 Spike 2 Nucleocapsid | <ul><li>positive</li><li>positive</li><li>negative</li></ul> |
| T cells CD8                              |                                                              |

#### B cells CD19

| Spike 1      | negative |
|--------------|----------|
| Spike 2      | negative |
| Nucleocapsid | negative |

#### Observation

- Significant activation of CD4+ T cells detected in response to Spike 1 and Spike 2 antigens.
- Significant activation of CD8+T cells in response to the tested peptide mixes of Membrane, Spike and Nucleocapsid.
- No activation of B cells.

Membrane mix

Nucleocapsid mix

Spike mix

#### Conclusion

Immunization to SARS-CoV-2 clearly detected.



positive

positive

positive

### Does vaccination induce T cell responses?









#### **Convalescent, N=4**





✓ Yes: T cell responses are induced by vaccination

### Clinical applications for Lymphocyte Analysis

- 1
- Persons with immunodeficiencies/suppression
  - Immunosuppression **treatments** e.g. Transplantation, Cancer therapy, Biological treatments
  - Primary immunodeficiency

- 2
- Do T cells induced from vaccination & past infections still recognise mutant variants?
  - Omicron (2 years after original strain identified in Wuhan)

### T cell immunity in immunosuppressed individuals





coloured points = antibody negative individuals

**Healthy** naïve controls N=10

Immunosuppressed (N=40)

- Vaccinated N=32
  - Infected N=8

#### **Even in immunosuppressed individuals:**

- ✓ Vaccination induces both helper & cytotoxic T cell responses
- ✓ Past infection also has a trend towards positive helper and cytotoxic T cell responses
- ✓ but... Important to check at the individual patient level (personalised healthcare)

### T cell immunity across different immunosuppressants

→ overall good vaccination-induced T cell responses

2° Immunodeficiency **N=20**after 2X vaccination



Healthy Donors
N=7
after 2X vaccination





#### **Overall**:

- ✓ Good T cell response
- but some poor responders

#### Recommendation:

- → test for T cells
- → extra caution / booster

### Omicron – master of (antibody) evasion

### Spike protein

(A) Delta

(B) Omicron



Image from: Kumar et al. (2022). J. Med. Virol. 94(4)



T cells recognise <u>linear peptides</u>

✓ less affected by conformational changes (recognition sites are conserved)

when T cell epitopes are mutated, problematic only for <u>specific HLA-haplotypes</u>

# Stimuli adaptation for Omicron

#### **Omicron mutations (60)**



|   | Wild-type                            | A <b>6</b> 6 o o | ted HLA a | Adapted for Omicron Peptide sequence |                                      |
|---|--------------------------------------|------------------|-----------|--------------------------------------|--------------------------------------|
|   | Peptide sequence                     | Affec            | тей пра   |                                      |                                      |
|   | <u>T</u> EKSNIIRGW                   | B*44:02          | B*44:03   |                                      | <u>I</u> EKSNIIRGW                   |
|   | <u>G</u> EVFNATRF                    | B*40:01          | B*44:02   | B*44:03                              | <u>D</u> EVFNATRF                    |
| ĺ | N <u>S</u> A <u>S</u> F <u>S</u> TFK | A*23:01          |           |                                      | N <u>L</u> A <u>P</u> F <u>F</u> TFK |
|   | <u>K</u> IADYNYKL                    | B*07:02          |           |                                      | <u>N</u> IADYNYKL                    |
|   | AE <u>H</u> VNNSY                    | B*44:03          |           |                                      | AE <u>Y</u> VNNSY                    |
|   | S <u>P</u> RRARSVA                   | B*07:02          |           |                                      | S <u>H</u> RRARSVA                   |

- → only 6 / 28 tested spike peptides affected
- → most abundant HLA allele A\*02 not affected



### Is immunity still effective against Omicron?





T cells induced by vaccination / infection still recognise Omicron mutant Spike protein

→ likely explains the reduced Covid-19 severity despite increased breakthrough infections

### Key Messages



Immunity exists as a **coordinated** response

Immunity against SARS-CoV-2

**Antibodies** 

**Cellular immunity** 

Lymphocyte analysis

Detection of SARS-CoV-2 specific T lymphocytes possible

Test available and in-use for routine diagnostics

- Application in routine diagnostics
  - ✓ Personalised healthcare
  - ✓ Immunodeficient patients:
    Poor / No Antibody response –

    test for T cells
- Providing an unmet diagnostic tool

Confirmation of past-exposure / vaccination response

→ advice for caution when multiple immune parameters absent

→ preparedness for future mutants / other viruses

...any suggestions? Questions? We are open to collaborate for further studies!



### Acknowledgements





Dr. Daniel Yerly



Dr. med. Oliver Hausmann



Prof. Dr. med. Werner Pichler



Dr. med. Pierre Gumowski

#### **ADR-AC team**

Kevin Kammermann Swelia Nussli Benno Grabscheid Florian Pichler Sofia Blomquist Zoë Jaccard **Blood donors**